STEM Guitar Project Engages Teachers And Students

The Guitar Building Institute, also known as the STEM Guitar project, is regularly mentioned here on AM News because they continue to move STEM forward in exciting ways. Sinclair Community College Professor of Mechanical Engineering Technology, Tom Singer, and his team are busy around the USA teaching educators about using guitar building to teach STEM to middle and high school students.

You can read more about their special events for U.S. Military veterans in our 2018 post: Guitar Building For Veterans In Puget Sound.

The STEM Guitar project was first awarded a National Science Foundation (NSF) grant in 2008 and its first classes started in 2009. As they celebrate their first full decade in operation, more than 800 STEM educators have participated in the five day workshops held all around the USA.

According to a recent post in the SME “Humans of Manufacturing” series, in which Tom Singer was profiled, “Students across the country have designed and manufactured 10,000 guitars. STEM teachers from 40 states have either gone through a Guitar Building Institute course or have purchased guitar kits. At Sinclair, the college produces about 1,200 guitar kits a year, making it a mid-tier guitar manufacturer within the industry.”

As an active partner of the TEAMM coordination network, whose mission is to bring together a wide variety of public and private sector stakeholders (for technician education) and improve access to professional development, the STEM Guitar project aligns with and helps TEAMM to fulfill its mission. STEM Guitar, with its team of 22 faculty around the U.S., coordinates faculty training and other non-profit skill building events related to STEM, Guitars, and materials.

While it is recommended and worthwhile to attend the official STEM Guitar workshop, (the staff here at AM News has participated in and documented several of the workshops), the project website at GuitarBuilding.org is loaded with information for educators and individuals, including the complete curriculum. Joining the live workshop gives participants an opportunity to build their own guitar and learn first-hand what is needed to replicate these lessons in the classroom (hint: you need a workshop, benches, tools). The curriculum and project based learning aligns with industry soft and hard skill sets and is crosswalked to K-12 standards

If you click through to the Video area of the site, you will find details on one of the techniques that the STEM Guitar team has perfected: How To Swirl Dip Your Guitar. The “Swirl dipping guitars from down under” link leads you to a YouTube video that gives you a unique view of the process — in the barrel of water looking up into the paint. Plus, you can see some of the amazing guitar finishing (lots of Swirl Paint jobs) results from photographer James Huntington Schuelke’s Flickr profile.

Here is the direct link to the YouTube Swirl Dip Your Guitar video.

TEAMM is always excited to see the progress and success of its members, but it is tough for any organization to match the energy and enthusiasm found in training other educators and middle/high school students. If you need to spark excitement for STEM learning, head over to Tom Singer and his team at STEM Guitar for ideas and inspiration.

Interested In STEM? Social Media Paths Into Materials Science, STEM, 3D Printing

Social media provides a terrific way for students to keep up with their peers and academic concepts as they progress in their chosen degree and field. It also gives educators the means to engage at deeper levels with students, but also to simply see what others are doing and how that might impact teaching and mentoring.

There are so many groups, pages and messaging opportunities within Facebook, LinkedIn Twitter, Instagram, YouTube, and informal groups within ad hoc group messaging or via a Slack Channel, the increasingly popular collaboration hub. There is no shortage of social outlets where you can advance your knowledge of your chosen career or interest area.

The TEAMM Network works to keep up with its member’s activities on social media. Many of the educators and institutions within the TEAMM Network are deeply involved with finding ways to share their expertise in STEM fields. Here are a few:

♦ Our sister organization, The National Resource Center for Materials Technology Education (MatEdU) is a NSF funded center housed at Edmonds Community College, recently created a new Facebook page curating the latest Materials Science innovations.

♦ TEAMM Network member, Dr. Ismail Fidan at Tennessee Technological University, started a LinkedIn Group called STEM ER[Educators & Researchers] that is filled with well over 36,000 members, many are quite active. “’STEM Educators & Researchers’ group links the research and education professionals in ‘Science, Technology, Engineering and Mathematics’ fields.”

♦ 500-plus educators connect on the 3D Printers in the Classroom Facebook group and it is worth a visit for creative ideas and to learn how others integrate 3D (and materials) into their classrooms. On a more international basis, 3D Printing Industry runs an active and popular Facebook page for keeping up with the latest news and tech reviews.

This short video showcases just a few recent posts highlighting how the sharing of information can be a good thing to keep you “in the know.” If you are actively running a social media group or page of some type on materials science, 3D printing, additive manufacturing, please email us with a link and some details.

Additional Resources: Here are three excellent blog posts on how educators are integrating social media (or not) into their classrooms.

  1. What Do Statistics Reveal About Educators and Social Media? (this post was highlighted in the short video in this post.)
  2. Social Media Classroom Use & Statistics
  3. Some Interesting Statistics & Facts on Social Media in Education You Must Know

International Day Of Women And Girls In Science

Last week marked the fourth annual International Day of Women and Girls in Science. In 2015, the United Nations established a resolution to acknowledge and celebrate the achievement of women in the sciences. The resolution also has the additional goal of encouraging the next generation of young women to pursue and solve new scientific challenges.

Screenshot of UNESCO Intl Day of Women Girls in STEM website
Screenshot of UNESCO Intl Day of Women Girls in STEM website

There are many worldwide and US-based initiatives designed to create gender equality in the sciences (as well as in all STEM fields). The United Nations estimates that “less than 30% of researchers worldwide are women.” The celebration is jointly coordinated between the UN-Women and UNESCO (United Nations Educational, Scientific and Cultural Organization) in collaboration with many institutional and civil organization partners.

Within the Additive Manufacturing and Materials Science disciplines, there are many female students entering these fields. In the US, many programs have been actively working to increase their female student enrollment in STEM degree programs. (I still need to confirm some examples, rewrite). We reached out to a couple of young women about their decisions to enter a STEM career.

At the University of Louisville, Kate Schneidau, a Mechanical Engineering Student and Engineering Co-op/Intern at RPC and AMCC, shared how she decided on a career in additive manufacturing:

“I grew up surrounded by STEM. I am a 3rd generation engineer and have known since I was young that this is the career path I wanted to take. My interest in additive manufacturing (AM) came after an opportunity arose for a cooperative intern position at the Rapid Prototyping Center (RPC) at the University of Louisville. Through my work there and now at the Additive Manufacturing Competency Center I have found a passion for AM. I am excited to work in collaboration with other engineers to engage in discussion on how to implement and expand the knowledge base of AM. As a senior engineering student looking at full-time positions I am only looking at positions that allow me to engage directly with AM in industry and expand upon my knowledge.”

Ashley Totin is a project engineer at America Makes and she shared a bit of her additive manufacturing and education journey with us.

“I always loved making and building things, but it wasn’t until my sophomore year in high school that “Engineering” was introduced to me. I loved science and math, and my high school teacher pulled me aside after class one day and asked if I ever looked into engineering. At that point in my life, I didn’t know much about engineering and thought that it was a dirty job that only men did. I discovered this was not the case, as there were a vast number of engineering fields. I decided to go into industrial and systems engineering and never looked back. I fell in love with manufacturing, the concept that everything we touch and see on a daily basis has been through a manufacturing facility. This then led me to discover additive manufacturing and America Makes, the national additive manufacturing innovation institute located in Youngstown, Ohio a short distance from the college I was attending. I instantly developed a passion towards this technology which led to teaching students and teachers about the technology, conducting a master’s thesis focused on AM and going on to have a career in AM. The possibilities for the younger generation are endless. These new technologies of the 4th Industrial Revolution provide a cleaner manufacturing environment and an exciting future.”

The fourth annual International Day of Women and Girls in Science is an important, but growing part of the overall effort taking place worldwide to close the gap around improving recruitment, retention, and promotion of women in STEM fields. Many TEAMM Collaboration Network partners support this significant work.

You can learn more at the UN Women and UNESCO pages, here and here.

Advanced Materials and 3D Printing at World Economic Forum

Davos.

Each year, thousands of people gather at Davos, Switzerland, for the World Economic Forum (WEF). With a theme that impacts our AM News readers this year (and beyond), Globalization 4.0: Shaping a Global Architecture in the Age of the Fourth Industrial Revolution, we wanted to encourage you to look at two priority areas for WEF: advanced materials and 3D printing.

We compiled and shared this short overview video on our Materials Education Facebook page (come visit, like our page, and learn more about materials science):

The World Economic Forum is looking at the large, global picture of society and business. But their research initiatives are well-funded and reveal many details that can help you in your educational endeavors, both for teachers and students. We encourage you to dig in on their Advanced Materials page as well as the one on 3D Printing. We will continue to share insights and new findings here as we uncover them.

According to the WEF site, “Participants drawn from all over the world and from every sphere of influence: business, government, civil society, academia, arts and culture, and media… Leaders and luminaries including Sir David Attenborough, Shinzo Abe, Angela Merkel, Prince William, and Jacinda Ardern will gather in Davos for the World Economic Forum’s Annual Meeting 2019.”

Although the 2019 event is now done, the WEF continues to work on a variety of important issues, from the above-linked Materials work to other important topics aimed at building a better global future.

NOTE: Of course, you can also find many news updates and resources on the pages of the TEAMM website and in our regular AM News posts, particularly this one on 3D Printing training for teachers via the TTU AM-WATCH program

Upcoming Materials In Stem (M-STEM) Workshop At University Of Alabama at Birmingham

Rockets and toothpicks do not seem to be related, but at this year’s upcoming M-STEM Workshop, hosted at the University of Alabama at Birmingham, STEM educators will find out how each one of these topics, plus many others, can help educators share how materials science can weave into every aspect of learning.

Over three decades, Materials in STEM (M-STEM), has served as a resource and aid to educators looking to add new ideas, hands-on projects and experiments, demonstrations and keynotes from professionals and other educators. During this two day, intensive workshop, on November 5 and 6, 2018, participants will gather to interact and connect with a wide range of experts. Three of the most popular past sessions will return for the 2018 event:

  • The Toothpick Factory
  • Teachers with Torches
  • Engineering Rockets

Each session is packed with ideas educators can take directly back to their classrooms and put into action to help students fall in love with STEM topics.

  • Motivating the Unmotivated Learner with STEM
  • Designing Features for Datums (related to 3D printing parts and projects)
  • Damping and Insulative Properties of Natural Fiber Composites
  • Practical Polymers
  • Nano Materials, Light and Water

The program is ideal for secondary and post-secondary faculty. In addition to the keynotes and sessions, there will be a Student Posters exhibit highlighting UAB student work in materials.

M-STEM is funded by the National Science Foundation (NSF) under a larger grant project known as the The National Resource Center for Materials Science Technology Education (MatEdU) based at Edmonds Community College in Washington State.

Register for the M-STEM Workshop here

This year’s event is held at the UAB Hill Student Center (picture above). You can check out the building map here or move around in the 3D photos on Google Maps to look at more photos of the Hill Student Center and the UAB surrounding campus.

Here are a couple of area attractions that participants might find interesting as well:

  • The Civil Rights Tour – Birmingham is one of the most influential locations of the Civil Rights Movement and a visitor could easily fill several days touring important sites.
  • Vulcan Park and Museum with the world’s largest cast iron statue